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Abstract

For all the potential and actual benefits of the Semantic Web,
it “remains largely unrealized”, as stated by Tim Berners-Lee.
Apart from practical issues that still must be tackled by the
community, there are theoretical issues still present in the Se-
mantic Web standards. One of such theoretical issues is the
representation and reasoning using imprecise or uncertain in-
formation. The foundation of the Semantic Web is the asser-
tion of relations between entities, but these relations usually do
not carry a degree or level of relationship. The relations either
are or are not. Using a simple subject-predicate-object tuple
we can say that Alice (subject) likes (predicate) Rock music
(object), but we can not say that she does so with a confidence
of 80%. This is important because representing and reason-
ing with imprecise information is essential to dealing with real
world information. We propose the use of the Transferable Be-
lief Model (TBM), an elaboration of the Dempster-Shafer The-
ory, as a way to achieve this. It will be particularly applied to
the visual surveillance domain. This is relevant because com-
puter algorithms to detect objects on scenes are not fully reli-
able, and representing this unreliability in the system is desir-
able. Exhaustive testing must be performed on the system, but
early empirical tests show the feasibility of using the TBM as
a model for reasoning with uncertainty in the semantic web.

1 Introduction

Recently, research on semantically enriched knowledge mod-
els for surveillance and forensic use is intensifying. They are
seen as an alternative to ad-hoc systems that offer little inter-
operability and do not adhere to any standard. Using semantic
web technologies for Smart Surveillance Systems offers several
advantages:

• The World Wide Web is large. It is comprised of mil-
lions upon millions of documents, hosted in an equally
large network of computers. This means that any devel-
opment towards the semantic web must ensure operabil-
ity in such a large scale.

• Semantic Web has still an active research community
tackling different issues, including modelling, indexing,

querying, and reasoning. Key aspects for the surveil-
lance task.

• Standard compliance allows the easy exchange of infor-
mation between different data sources. Expanding the
available knowledge for the reasoning task.

Additionally, when dealing with information from the real
world (such as in the surveillance domain), one has to take into
account the ‘ignorance’ inherent in the data-sources. Ignorance
can be defined of three types[2]:

• Incompleteness Not all the data is known

• Imprecision Data is available with an imprecise mea-
surement

• Uncertainty The data may be wrong

One of the open issues in Semantic Web technologies is the
representation of imprecise and uncertain data. The semantic
tuples (inferred or otherwise) and rules are binary only. That
is, one can not assert, in a standard compliant way, degrees or
levels for the predicates or relations between the entities. This
causes that tuples asserted can only be binary and the informa-
tion inferred from rules can only either be (when it is explicitly
stated in the relations) or not be (when there’s no relationship),
but there is no degree of confidence or the accuracy of the ex-
tracted or inferred information.

It would be desirable to be able to encode and reason using
relative (as opposed to absolute) information in the semantic
web, mostly because information in the real world is usually
flexible or relative and computer systems are imprecise or un-
reliable when dealing with the real world. For this we propose
to use subjective logic, and more specifically, the Dempster-
Shaffer Theory of Evidence and it’s Transferable Belief Model
(TBM) elaboration. We intend to apply this specifically in the
forensic and surveillance domain, but the model is generic and
can be applied to any other domain. Exhaustive explanation of
the TBM falls outside the scope of this paper. For a more com-
plete theoretical explanation behind the model, please refer to
[2].

The Dempster-Shafer (DS) Theory of Evidence is a frame-
work for reasoning under uncertainty. It was developed by
Glenn Shafer to represent uncertain knowledge, starting from
the works of his advisor, Arthur Dempster. It allows to com-
bine evidence from different sources and arrive to a degree of
belief which takes into account all the sources of information.



To be able to use the DS framework in the semantic web,
two issues must be tackled: encoding the information in a se-
mantic framework and reasoning with this information to create
new knowledge. In the next chapters we will introduce briefly
the DS framework and its concepts and we will propose ways
to deal with the encoding and reasoning issues in the seman-
tic web. The rest of this document follows the next structure:
Section 2 presents previous attempts at representing probability
and uncertainty in the semantic web. The TBM is introduced
in section 3. In section 4, the proposed ontology is presented.
Section 5 deals with the operations of the TBM to be imple-
mented for the reasoning task. Finally, section 6 presents final
remarks and future work.

2 Literature Review

There are already some efforts for encoding probabilistic in-
formation in the semantic web using OWL and/or RDF. These
efforts usually handle some other form of uncertainty handling
or offer a general way to encode any probabilistic information
in the semantic web. In [6] for example, an approach is pro-
posed for modelling and reasoning with Bayesian networks for
the task of ontology mapping. [4] also focuses on Bayesian
Networks, but not just for ontologies mapping. It proposes
a vocabulary to model Multi-Entity Bayesian Networks. The
actual task of reasoning is left for specific tools. In [5] both
a model and a probabilistic reasoning engine using Markov
Logic is proposed. The W3C has also started evaluating the
standardisation of probabilistic ontologies, as can be seen in
the efforts expressed in [13] and [7]. A review of some of these
efforts and some others can be seen in [12].

In the forensic and surveillance domain, Han et al. at-
tempted first to use subjective logic to handle uncertainty and
subjective logic to handle incompleteness using semantic web
technologies. In [8] several forensic questions are tried to an-
swer like ‘who is the suspect of the event?’ and ‘who is the
most probable witness of the suspect of the event?’. Data is
modelled in OWL and in this first approach, data is annotated
manually. This framework is then successfully tested on the
detection of simple events like two people speaking.

Han et al. further explore the feasibility of subjective logic
for surveillance and forensic scenarios in [10] and default rea-
soning is considered for dealing with incompleteness. Here,
appropriate operators for dealing with surveillance data using
subjective logic and default reasoning (but not specific to se-
mantic web technologies) are introduced. Successful examples
are presented for identity inference and theft inference, with
and without contextual cues. Details about the implementation,
if any, are not reported.

This approach is extended in [9] for estimating whether one
person could serve as a witness of another person in a public
area scene. To deal with the uncertainty, a reputational subjec-
tive opinion function for the spatial-temporal relations is de-
veloped. In addition, the acquired opinions are accumulated
over time using subjective operators. A preliminary test case
is performed on a airport surveillance manually annotated one
minute video. Logic Programming with the CLIPS rule engine

is used. Large scale and more complex scenarios test are still
missing.

Others have attempted to include ignorance handling (par-
ticularly Imprecision and Uncertainty) extensions to web se-
mantic languages (albeit not specific to surveillance or forensic
scenarios). In [3], Ceolin et al. proposed three extensions and
applications of subjective logic in the Semantic Web, namely:
the use of semantic similarity measures for weighing subjec-
tive opinions, a way for accounting for partial observations, and
the new concept of ‘open world opinion’, i.e. subjective opin-
ions based on Dirichlet Processes, which extend multinomial
opinions. Finally, [1] proposes fuzzy ontologies using OWL 2
annotation properties along with constructs particular to fuzzy
logic, which would allow to handle imprecise data on a regular
semantic framework.

None of these approaches are tailored for the TBM or the
DS theory.

3 Introduction to the Transferable Belief
Model

We will use a single variable example based on one presented
in [2] to introduce one by one the concepts of the Transferable
Belief Model. In this example, we are tasked with finding the
name of Johns wife, which we know can be either Mary, Jane
or Sabrina. This leads us to the first concept: frame of discern-
ment.

Frame of discernment (Ω) The frame of discernment is the
finite set which holds all the hypothesis of the task. In our ex-
ample, Ω = {Mary, Jane, Jill}. In a closed world context,
the truth must be inside this frame of discernment. In an open
world context, the truth may be somewhere else. For this ex-
ample, we will use the closed world assumption, but it must be
noted that OWL and related ontology languages use the open
world assumption.

Suppose now that an old person remembers John’s wife be-
ing either Mary or Jane, but he’s not sure. This now leads us to
the next three concepts: Potential (Evidence), Mass function,
and focal elements.

Potential is a known fact about the task in the frame of dis-
cernment. It can be the result of an observation, a measure-
ment, or in our case, a testimony. Every time new evidence
is known, the system must be updated to account for the new
information.

Mass function The mass (m) is a quantifiable amount of sup-
port to a group of hypothesis in Ω. This support is introduced
by the Evidence. Assigning a mass m(A) to a subset A of
Ω, gives support to exactly that subset A. The mass function
for particular evidence must verify that

∑
A⊆Ω m(A) = 1. In

our case, we subjectively select the value of 0.8 to the con-
fidence of the testimony of the old person. This means that
m(Mary, Jane) = 0.8. We need to include the fact that this
person might be wrong, but we should be careful not to assign
the rest of the mass to Jill, because the testimony does not



support directly the fact that John’s wife is Jill. This means
that m(Mary, Jane, Jill) = 0.2.

Focal elements are the subsets of Ω having non-null mass.
The set of focal elements is called Focal Set (FS). In our case,
FS = {{Mary, Jane} , {Mary, Jane, Jill}}.

We now learn from another person that he knows John’s
wife has short hair, and we know that only Jane and Jill have
short hair. We now must combine the new information with
the current state of the knowledge base. For this we must in-
troduce two new concepts: Potential and Dempster’s Rule of
Combination.

Potential is the formal way of defining the evidence available
to the system. It is the mass function induced by particular
evidence. In our case, we have two potentials produced by the
two testimonies we have right now.

t1 = {{Mary, Jane} [0.8], {Mary, Jane, Jill} [0.2]}

t2 = {{Jane, Jill} [0.9], {Mary} [0.1]}

Dempster’s Rule of Combination currently we have two
potentials t1 and t2, each with its own mass functions mt1 and
mt2. The goal is to get single, combined potential t1⊕2 with
a joint mass function mt1 ⊕mt2. Dempster’s Rule of Combi-
nation relies on the intuition that the product m1(X) ∗m2(Y )
supports X ∩ Y . This means that:

m1,2(A) = (m1 ⊕m2)(A) =
∑

B∩C=A6=�
m1(B) ∗m2(C)

For the current state of our knowledge base, we get the follow-
ing generated Focal Elements:

FEt1⊕t2 = {{Jane} , {Mary} , {Jane, Jill}}

and the following masses:

m({Jane}) = 0.8 ∗ 0.9 = 0.72

m({Mary}) = 0.8 ∗ 0.1 + 0.2 ∗ 0.1 = 0.1

m({Jane, Jill}) = 0.2 ∗ 0.9 = 0.18

for a combined potential of:

t1⊕2 = {{Jane} [0.72], {Mary} [0.1], {Jane, Jill} [0.18]}

A situation arises when we introduce new evidence that contra-
dicts the currently available potentials. Let us now assume that
a person tells us that one day they saw John in a romantically
compromising situation with Mary. The newly introduced po-
tential (with the subjectively selected values of 0.8 and 0.2 to
the confidence of the information) is:

t3 = {{Mary} [0.8], {Jane, Jill} [0.2]}

If we try to combine this potential into the knowledge base
we will notice that {Jane} ∩ {Mary} = � and {Mary} ∩
{Jane, Jill} = �. This means we have a conflict. This is

evident when we combine the new potential and get empty fo-
cal elements and this happens because one potential is strictly
supporting a set of hypothesis, and the other one supports a
completely disjoint set of hypothesis. In TBM, we can quan-
tify this contradiction, known as the conflict k as the sum of
the product of the masses of the conflicting focal elements:

k1,2 =
∑

B∩C=�
m1(B) ∗m2(C)

In our case:

k = 0.72 ∗ 0.8 + 0.1 ∗ 0.2 + 0.18 ∗ 0.8 = 0.74

Under the open world assumption, a conflict means that the
truth lies outside the current frame of discernment. In that case,
the conflicting mass would go to � (m(�) = k). In an closed
world assumption, to keep the mass functions adding to 1, the
produced mass function must be normalised with the conflict-
ing mass. This means that the combination becomes:

m1,2(A) = (m1⊕m2)(A) = 1
1− k1,2

∑
B∩C=A6=�

m1(B)∗m2(C)

In our closed world example, this means that:

FEt1⊕t2⊕t3 = {{Jane} , {Mary} , {Jane, Jill}}

m({Jane}) = 0.72 ∗ 0.2
1− 0.74 ≈ 0.55

m({Mary}) = 0.1 ∗ 0.8
1− 0.74 ≈ 0.3

m({Jane, Jill}) = 0.2 ∗ 0.18
1− 0.74 ≈ 0.14

t1⊕2⊕3 = {{Jane} [0.55], {Mary} [0.3], {Jane, Jill} [0.14]}

The goal of the task is to find John’s wife according to the
evidence we have. We will now introduce some functions that
will allow us to quantify our knowledge of the case according
to the available evidence.

Belief is the justified amount of support given to any subset of
Ω. Any mass that includes a given subset, supports that subset.
It could be interpreted as the lower probability that the solution
is the subset. Mathematically:

bel(A) =
∑

B|B⊆A

m(B)

For this exercise we are interested in knowing our belief,
according to the evidence, that each of the elements in the
frame of discernment is John’s wife:

bel({Mary}) = 0.3

bel({Jane}) = 0.55

bel({Jill}) = 0



Plausibility is the total amount of support given to A at least
partially. More specifically, is the support not given strictly to
A. It could be seen as the upper probability that the solution is
the subset A.

pls(A) = 1− bel(A) =
∑

B|B∩A6=�

m(B)

In our example:

pls({Mary}) = 0.3

pls({Jane}) = 0.55 + 0.14 = 0.69

pls({Jill}) = 0.14

It can be seen intuitively that bel(A) ≤ pls(A).

Ignorance is the difference between pls(A) and bel(A). It’s
the support that is only given partially to A. Intuitively we can
see that these are masses allocated not exclusively to A, which
means that we do not have enough information to discriminate
between the support to A and all the other members of the focal
elements where A is present.

ign(A) = pls(A)− bel(A)

Doubt is the degree of support that will never be assigned to
A.

dou(A) = 1− pls(A) = bel(A)

So far, what has been done is simply asserting beliefs. But
the goal of all of this is to make a decision. These are the two
levels of the TBM:

• Credal level (from Latin Credo “I Believe”) is where
beliefs are assessed, updated, and combined.

• Pignistic level (from Latin Pignus “Bet”) is where deci-
sions must be made.

Once the knowledge base is updated with all the available
information, all the potentials are combined, and all the be-
liefs are updated, we must select from Ω the best hypothesis
or group of hypothesis. There is no standard rule for this, and
usually rules are created for specific problems, commonly in-
volving the belief and plausibility functions mentioned before.
For example, selecting the maximum of belief or plausibility,
or a combination of both. More advanced rules are available
but will not be discussed here.

In our example, we can see that Jane is likely John’s wife,
as is not only the hypothesis with the highest amount of sup-
port, it is also the most plausible.

Extensions exists to handle domains where the hypothesis
lie in multiple variables. In John’s wife example, we might be
interested in finding also the age of John’s wife, or the colour
of her hair. In the surveillance example, we want to infer the
type of events given the actors and their actions. Although this
extensions will not be explained here, they will be taken into
account for the actual work concerning this project.

4 Transferable Belief Model Ontology

The first task towards implementing the TBM in the seman-
tic web, is defining it’s vocabulary or taxonomy in a standard
compliant way. For this, we identify the important and relevant
concepts for the reasoning task and encode them in an OWL
ontology. A first version of this ontology is presented in Figure
1.

Figure 1. The proposed Transferable Belief Model ontology

• TBM:Hypothesis is the first concept and it is basically
a variable in the domain of the problem we want to ad-
dress.

• TBM:FrameOfDiscernment is the collection of possi-
ble TBM:Hypothesis in the domain.

• TBM:FocalElement consists of a collection of
TBM:Hypothesis and a Mass property which is a float
numeric value.

• TBM:Potential is an observation or measurement and
consists of a collection of TBM:FocalElements.

It does not seem necessary to model FocalSets, as it’s sim-
ply an intermediate step to the potentials.

Under this paradigm, a domain would define it’s own con-
cepts and inherit the variables from the TBM ontology. A rea-
soning engine would then perform the reasoning with the vari-
ables. For example for a surveillance ontology, the variables
or hypothesis, would be the events and the objects. The visual
analysis would feed the knowledge base with the levels of con-
fidence of the detection task (i.e. a given blob is a person with
a reliability of 70%).

5 Reasoner

The reason why the concepts of Combination, Belief, Plau-
sibility, Ignorance, and Doubt where not included in the on-
tology, is because these are actually operations, and the main
tasks involved in the actual reasoning. The reasoning engine
will be the implementation of these operations. In particular:

Combination will be the main operation. The first time the
knowledge base is instantiated, it will look for all the instances
of potentials and they will be sequentially combined in a new
instance of a potential with all the combined Focal Elements
and masses. Every time a new potential is added, it will be



combined into the “global” potential. Given the complexity of
Dempster’s Rule of Combination [11], special care must be had
in the implementation. Big-data models for large scale process-
ing like Map-Reduce and Google’s Pregel, are being evaluated.

Belief, Plausibility, Ignorance, and Doubt will be built-in
functions. This functions can be used by the user either in
SPARQL queries, SWRL rules, or client applications. No spe-
cific function for the selection of hypothesis will be imple-
mented. This will allow the client applications to implement
their own selection using their own rules, aided by the imple-
mented functions. This functions will also require the use of
Big-data processing models.

6 Conclusions and Future Work

We have presented in this paper a framework for reasoning
with imprecise and uncertain data using the Transferable Be-
lief Model of the Dempster-Shafer Theory. This framework
consists of an ontology to model de concepts of a domain, and
a reasoning engine to infer new information. The framework
must be exhaustively tested, but early empirical tests show the
feasibility of the framework and the use of the TBM to rea-
son on the semantic web with uncertain data. The tests are
being performed on the surveillance domain, where metadata
extracted from CCTV recordings is indexed in the repository,
along with the certainty of the data. This information is then
combined to create new hypothesis and potentials. The user
can then perform queries to extract the new knowledge and act
on it.
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