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Abstract

Brain computer systems interface (BCI) is a continuing and
growing field in evolution. During the last decades, many labo-
ratories have begun to explore technologies BCI as a new com-
munication option for people with neuromuscular disabilities
that prevent them from using conventional augmentative com-
munication methods. In this work is presented a methodology
for the classification of motor imagination, using features ex-
tracted from power spectral density (PSD) as feature extrac-
tion technique. Two approaches are evaluated, first computing
PSD features from the raw data and the second, performing
a decomposition by means of the discrete wavelet transform
(DWT). Obtained classification results show that features ob-
tained through PSD with DWT achieves an accuracy of 85%, a
sensitivity of 90% and a specificity of 80% while the results ob-
tained with PSD over the raw data has a precision of 70%, one
sensitivity 60% and specificity of 80%. Demonstrating that the
performance of the classifier with the proposed preprocessing
stage was improved.

1 Introduction

Brain computer interface (BCI) systems are a continuous and
growing field in evolution. A BCI system is a hardware and
software communication system that allows cerebral activity to
control computers or external devices. During the last decades,
many laboratories have begun to explore BCI technologies as
a new option of communication for people with neuromus-
cular disabilities which prevent them from using conventional
communication methods [9]. BCI systems uses different neu-
roimaging techniques to record brain activity and translate cer-
tain characteristics, corresponding to the user’s intentions, into
commands for computer or other devices applications. The
electroencephalogram (EEG) is the most widely used method
to record the brain signals, because it is a noninvasive technique
easy to handle, inexpensive and portable [10].

Patients in a late stage of amyotrophic lateral sclerosis
(ALS) or suffering from a syndrome of captivity are not able
to produce voluntary muscle movement [11], to solve these
problems BCI-based imagery motor systems are investigated.

In San Diego, California USA, was presented a non-motor im-
agery tasks classification EEG based brain computer interface
(BCI) for wheelchair control. To this aim, two different fea-
tures extraction methods, power spectral density (PSD) and
Hilbert Huang Transform (HHT) energy, were compared to
find the most suitable method with improved classification ac-
curacy using a Genetic Algorithm (GA) based neural network
classifier. The results from five subjects showed that using
the original eight channels with three tasks, accuracy between
76% and 85% is achieved. With only two channels in combi-
nation with the best chosen task using a PSD feature extrac-
tor, the accuracy is reduced to between 65% and 79%. How-
ever, the HHT based method provides an improved accuracy
between 70% and 84% for the classification of three discrimi-
nating tasks using two EEG channels [5].

A close approach was done in [7], where it was investigated
a nonlinear approach for feature extraction of EEG signals in
order to classify motor imagery for Brain Computer Interface
(BCI). This approach was based on the Empirical Mode De-
composition (EMD) and band power (BP), the classification of
motor imagery was performed by using two classifiers, Lin-
ear Discriminant Analysis (LDA) and Hidden Markov Mod-
els (HMMs). Obtained results showed that including EMD
method allows the most reliable features and enhances the clas-
sification rate, than using only the direct BP approach, with an
accuracy of about 83.12% and 78.29% respectively. Also in [4]
is presented the performance of a Linear Discriminant Analysis
classifier that used EEG data from 3 different subsets of the sig-
nal, which was gathered during the execution of 4 upper limb
movements. The mean Power of the signal, segmented in 8
EEG frequency bands, was used as the features for the classifier
and the effect of spatial feature selection was also studied. A
non-conventional potential difference based on an 8-electrode
clinical transversal setup was used in the acquisition of EEG
signal during arm and hand movements, which were segmented
in Movement Planning, Movement Execution and Steady Posi-
tion. The results showed that the best classification accuracy of
right and left limbs was 67.95%, hands versus arms achieved
82.69%, and 49.36% of classification was the best result for the
4-class set up.

In the State of the art, some techniques based on spec-
tral power density or power spectral density are used to ex-
tract features from EEG signals and combined with other meth-



ods, e.g. EMD. Although the results are promising, they need
more experiments to obtain better classification accuracy. In
this work a methodology for motor imagination classification
is proposed. Classification over a set of features estimated by
means of power spectral density (PSD) is compared against an
approach with a preprocessing step, where the discrete wavelet
transform is used to decompose the EEG signal into frequency
bands and further analyzed by PSD. The methodology is tested
in the 2003 data set BCI competition, which has data imagina-
tion motorboats of the left hand and the right with 140 record-
ings with 3 electrodes and 1152 samples. The results obtained
show that the preprocessing stage of decompose the signal into
frequency bands allows a better set of features than using the
raw data in terms of accuracy, sensitivity and specificity values.

2 Materials and methods

2.1 Discrete wavelet transform (DWT)

The discrete wavelet transform (DWT) analyzes the signal at
different frequency bands by decomposing of signal into a
coarse approximation and detail information. The DWT can
be described mathematically as a set of inner products between
a finite-length sequence and a discretized wavelet basis. Each
inner product results in a wavelet transform coefficient. Thus,
the DWT can be expressed as:

Wf (j, k) =
N−1∑
N=0

f (n) ·ψ∗
j,k (n) (1)

where Wf (j, k) is a DWT coefficient; f (n) is a sequence
with length N ; the expression:
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is the discretized wavelet basis; and sj
o and sj

o · k are the
discretized versions of the scale and translation parameters, re-
spectively.

DWT decomposition can be seen as a set of high-pass and
low-pass filters in a filter bank. Following the filtering, the sig-
nal is decimated by a factor of two. The outputs of the low-pass
branch are called wavelet approximation coefficients, and the
outputs of the high-pass branch are called wavelet detail coeffi-
cients. The wavelet decomposition can be iteratively performed
until a maximum scale is reached. The maximum scale is de-
pendent on the signal length and the wavelet basis length[3].

2.2 Power Spectral Density (PSD)

Power spectral density (PSD), describes how to the power of a
signal or time series is distributed with frequency. Since sig-
nal with nonzero average power is not square integrable, the
Fourier transforms do not exist in this case. The PSD is the
Fourier transform of the autocorrelation function of the signal.

The power of a signal in a given frequency band can calcu-
lated by integrating over positive and negative frequencies. The
definition of power spectral density generalizes in a straight

manner to finite time series with 1 ≤ n ≤ N ,such as signal
sampled at discrete times xn = x (n∆t) for a total measure-
ment period T = N∆t [8].

S
(
ejw
)

= 1
2πN

∣∣∣∣∣
N∑

n=1
xne

−jwn

∣∣∣∣∣
2

(3)

3 Experimental Framework

3.1 Dataset

Used Dataset was provided by Department of Medical Infor-
matics, Institute for Biomedical Engineering, University of
Technology Graz [2]. It was recorded from a normal subject
(female, 25 yrs) during a feedback session. The subject sat in
a relaxing chair with armrests. The task was to control a feed-
back bar by means of imagery left or right hand movements.
The order of left and right cues was random. Figure 1 shows
the timing of the experiment. The first 2s was quite, at t = 2s
an acoustic stimulus indicates the beginning of the trial, the
trigger channel (#4) went from low to high, and a cross (“+”)
was displayed for 1s; then at t = 3s, an arrow (left or right)
was displayed as cue. At the same time the subject was asked
to move a bar into the direction of the cue. The feedback was
based on AAR parameters of channel #1 (C3) and #3 (C4),
the AAR parameters were combined with a discriminant anal-
ysis into one output parameter.

0 1 2 3 54 6 7 8 9

Trigger 
Beep
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Feedback period with cue

Figure 1. Timing of the experiment

The recording was made using a G.tec amplifier and a
Ag/AgC1 electrodes. Three bipolar EEG channels channels
(anterior ‘+ ’, posterior ‘-’) were measured over C3, Cz and
C4 Figure 2. The EEG was sampled with 128Hz, it was filtered
between 0.5 and 30Hz. The experiment consists of 7 runs with
40 trials each. All runs were conducted on the same day with
several minutes break in between. Since one half of the dataset
are provided for training there are 140 trials of 9s length.

3.2 Data pre-processing and decomposition

Given that the first 3s are irrelevant (quiet state and cross dis-
playing), EEG signals are used from second 3rd to 9th. For the
comparison approach, the signal is decomposed into frequency
bands using the discrete Wavelet transform. The number of
levels of decomposition was chosen on the basis of the domi-
nant frequency components of the signal. According to imag-
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Figure 2. Electrode placement

Decomposed signal Frequency range (Hz) Rhythms
A5 0 – 2 Delta (δ)
D5 2 – 4 Delta (δ)
D4 4 – 8 Theta (θ)
D3 8 – 16 Alpha (α)
D2 16 – 32 Beta (β)

Table 1. Frequencies corresponding to different levels of de-
composition for Daubechies order 4.

ined right/left hand movements, we chose the level of 5 and the
wavelet of Daubechies order 4 [6]. As a result, the EEG sig-
nal is decomposed into the details D2-D5 and approximation
A5 for each of the three electrodes. The ranges of different
frequency band are shown in Table 1.

3.3 Feature Extraction

To extract relevant information from EEG signals and charac-
terize the motor imagination of left/right hands two approaches
was taken. As a first approach, each raw signal from electrodes
C3, Cz and C4 were analyzed by PSD and such features were
concatenated into a single vector. Comparison approach ex-
tract a set of feature for each level of decomposition (details
(D2-D5) and approximation (A5)) creating a single vector by
stacking the features of each one of the three electrodes.

3.4 Classification

Due to the high amount of features, principal component anal-
ysis (PCA) technique is used to reduce data dimension. This,
aiming to provide better classification accuracy and reduce the
computational cost. PCA is set to retain 99% of data variance.
It is worth to note that dimension reduction is done for all the
characterization techniques described before. Besides, an SVM
is used for the classification stage. Since it has free parameters,
a suitable tuning must be done. Thus, a two-dimensional explo-
ration for all the possible values of the SVM trade-off constant
C and the kernel band-width σ is carried out by means of a Par-
ticle Swarm Optimization (PSO) meta-heuristic [1]. To avoid

over-training of the models, a cross-validation of ten folds is
performed. The limits of the search space were defined as
(10−3,104) for σ and (1,10−6) for C. Additionally, the number
of particles for the search was set to 10, while the maximum
number of iterations was set to 20.

4 Results and Discussion

Scatterplots for both considered feature extraction approaches
are shown in Figure 3. Specifically, in the Figure 3(a) is de-
picted PSD features over raw EEG signal. A strong overlap-
ping among classes is present, exhibiting that despite belong-
ing to different classes, some samples has similar information.
Such overlapping prevents a proper classification performance.
From the foregoing, it can be concluded that another method
is required to separate and improve classification features. In
Figure 3(b) is shown the scatterplot of the features computed
by means of PSD, when data has a preprocessing stage of de-
composition with DWT. Although there is a region with some
overlapping between classes, most of the samples for different
classes are separable from each other, which improves classifi-
cation result.
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(a) PSD over raw EEG
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(b) PSD with DWT

Figure 3. Scatterplots for considered feature extraction meth-
ods.

Classification performance is summarized in terms of ac-
curacy, sensitivity and specificity and shown in Table 4. Since
a 10 fold cross-validation was done, results are presented as
mean value with standard deviation. It is worth to note how the



preprocessing stage with DWT enhances both the classification
accuracy and the sensitivity, from 70% to 85% and from 60%
from 90%, respectively. While the specificity remains the same
(80%), it it should be noted that the standard deviation is less
when using DWT decomposed levels, leading to more stable
specificity results.

PSD over raw EEG PSD with DWT
Accuracy 0.7 ± 0.174 0.85 ± 0.103
Sensitivity 0.6 ± 0.188 0.9 ± 0.118
Specificity 0.8 ± 0.225 0.8 ± 0.154

Table 2. Classification performance

5 Conclusions
A methodology for the classification of the left-right hands
movement imagination was proposed, achieving a result of
85% accuracy, which is comparable with some results of the
State of the art. EEG recordings from three electrodes are an-
alyzed. It was demonstrated how, for this type of motor im-
agery tasks, a decomposition stage using power spectral density
as a feature extraction technique over the wavelet decomposi-
tions allows to obtain more information in the bands, which
improves the performance of the classifier in terms of accu-
racy, sensitivity and specificity. It is worth notice that the used
database contains only information of one single subject, in
BCIs the control is user dependent and not all subjects can per-
form perfect control of the system.

As future work it would be interesting to study other types
of decomposition such as EMD or band-frequency filtering.
Besides, further experiments with the proposed methodology
for tasks addressed by BCI systems should be done, and ex-
plore the methodology with more users.
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