Prof. Sergio A Velastin (Professor of Applied Computer Vision, Senior Research Scientist, Cortexica)

# From Objects to Actions

(Jorge Espinosa, National University Colombia Fiza Murtaza, Saima Nazir, M.H. Yousaf, Tech Univ Taxila, Pakistan Huy Hieu Pham, L. Kouhdour, A. Crouzil, U. Paul Sabatier, France)

ICPRS-19, Tours, France, 8<sup>th</sup> – 10<sup>th</sup> July 2019

sergio.velastin@ieee.org



# Outline

Motivation

2

- Transport Applications
- Using RGB-D in semi-open spaces
- Human Action Recognition
- Where Next?



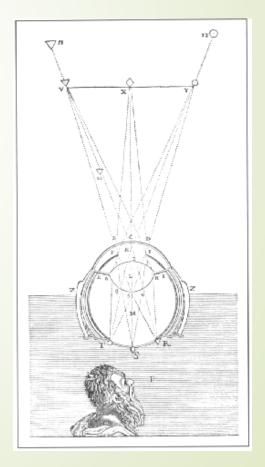
# Introduction

"It is by looking and seeing that we come to know what is where in the world"

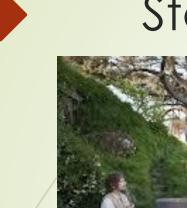
and when ...

3

David Marr (1945-1980)







4

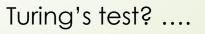
# Story telling













# Many Applications ...

















# What does a picture MEAN?





XICA

- Meaning implies context and experience (incl. non-visual).
- We are still not sure how to represent and manipulate these.
- Systems more successful when context is implicit/known (engineering?).
- But human activity is very rich!



# Is one picture worth 1000 words?



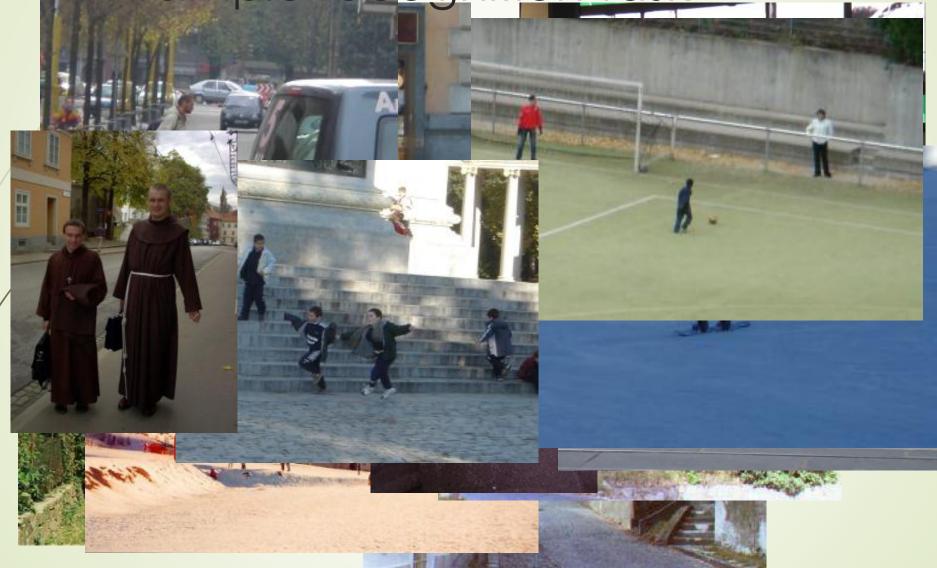


So we can think of computer vision as converting visual data to temporal/spatial **narratives** 

Not quite there yet, unless we significantly constrain the environment



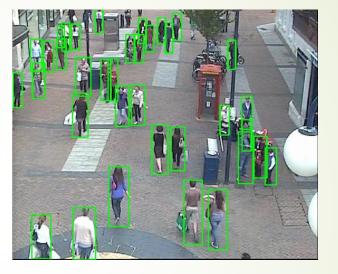
# A simple recognition task



# Detection and tracking of people





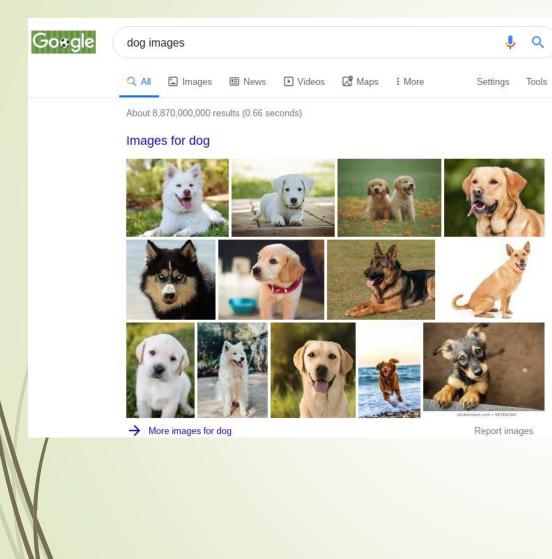


Oxford Dataset

**RBK** Dataset

- Multi-scale
- Occlusion

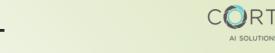
# How to recognise "objects"?



- Internet: explosion of available labelled images/videos (eg. Google search "dog images"
- Video Games: Very Powerful Graphics Cards (GPUs) that can do many operations in parallel and very quickly
- Neural networks, in particular "Convolutional Neural Networks":
  - Can reach good accuracy if trained with LOTS of labelled data
  - GPUs can implement "deep" networks (many layers) able to "generalise" from LOTS of data
- For photos like these, deep nets outperform humans



# Back to the real world... Objects and Actions



# Environment/Transport

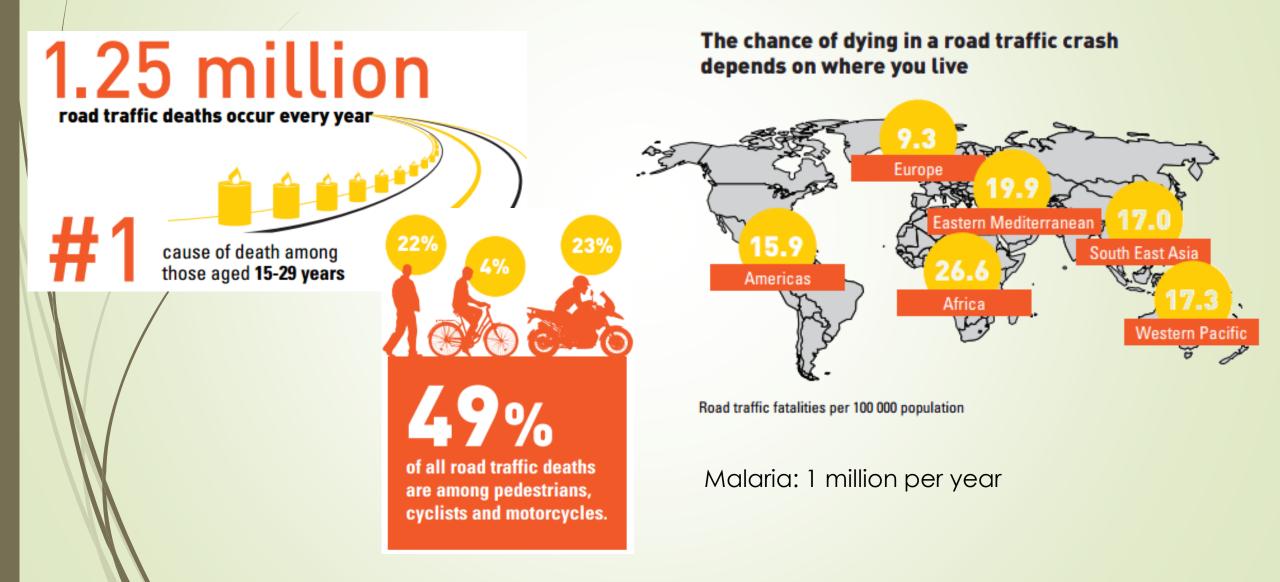
### EveningStandard. 1 April 2019

# Revealed: two million Londoners live in areas with illegal toxic air

"Pollution levels have been falling gradually for almost a decade due to the introduction of cleaner vehicle engines but experts are concerned that an increase in the number of **motorbikes and scooters** since 2010 is causing "hotspots" of roadside particulates."



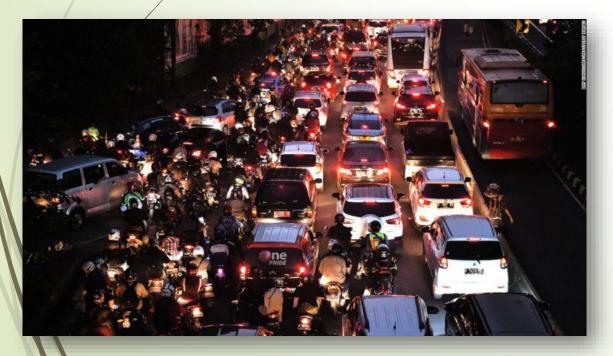
### Fatalities and Vulnerable Road Users







- To detect and track individual motorbikes even under occlusion. Use to increase safety and traffic enforcement
- Hypothesis: can use deep-learning object detection/classification
- Problem: virtually no large ground-truthed datasets of motorbike traffic





17

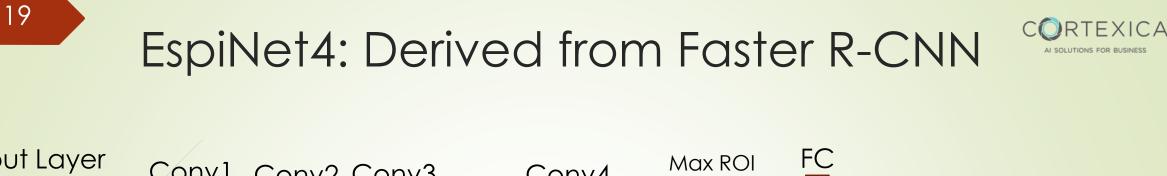
# A public motorbike dataset (UMD)

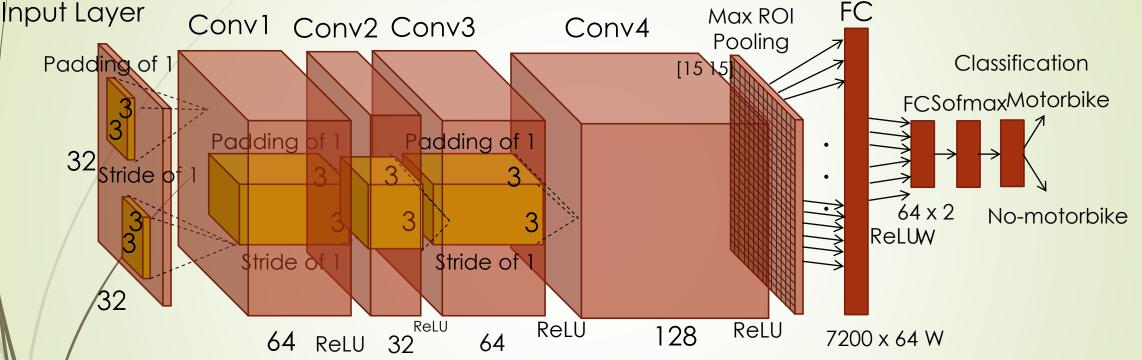




- 7,500/10,000 annotated images
- 220/317 motorcycles on urban traffic.
- 41,040/56,795 ROI annotated objects
- 60% Annotated object are occluded

Available at: http://videodatasets.org







 Took 62 hours for training the dataset (90% Training – 5% Validating – 5% Testing)

AP=89,3% on UMD10K (2 layers=75%)
YOLO AP=80%, Faster R-CNN=69%

# Under conventional CCTV conditions





EspiNet = 80%

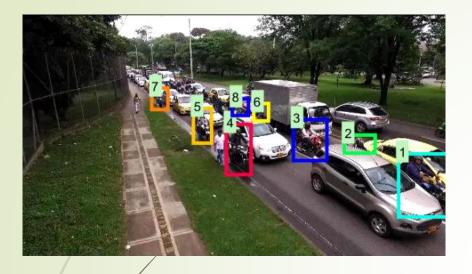
- 5000 annotated images (6) different cameras)
- 827 motorcycles tracks on urban traffic
- 704 x 480 (low resolution)
- 21,625 ROI annotated motorbike objects Minimum H size 25 px
- 40 % Annotated object are occluded

Available Soon at: http://videodatasets.org



**YOLO V3 AP = 77%** 

# Tracking by detection



| Rcll | Prcn | FAR  | GT  | ΜT  | ML | IDs     |  | МОТА  | MOTP |
|------|------|------|-----|-----|----|---------|--|-------|------|
| 86.5 | 87,5 | 0.75 | 128 | 126 | 2  | <br>128 |  | 93.52 | 96.8 |

Y. Xiang, A. Alahi, y S. Savarese, "Learning to track: Online multi-object tracking by decision making", en Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4705–4713.



RTEXICA

AI SOLUTIONS FOR BUSINESS



| Rcll | Prcn          | FAR  | GΤ  | ΜT  | ML | ן | IDs |   | MOTA | MOTP          |
|------|---------------|------|-----|-----|----|---|-----|---|------|---------------|
| 83,3 | 56 <b>,</b> 3 | 2,70 | 816 | 411 | 81 |   | 503 | I | 16,3 | 67 <b>,</b> 2 |



# Detection of People Boarding/Alighting a Metropolitan Train





PAMELA-UANDES dataset (<u>http://videodatasets.org</u>) EspiNet4 AP= 82%

22



# Using RGB-D for human action recognition



#### **CEREMA** Metro Station Dataset (CEMEST)

# Approach (using articulated data)

- NTU RGB+D dataset
- 3 Kinect-2 sensors
- Skeletons, RGB, depth
- 56K videos, 4M frames, 40 subjects, 60 classes



Handshaking

Typing



**Touching head** 



Reading



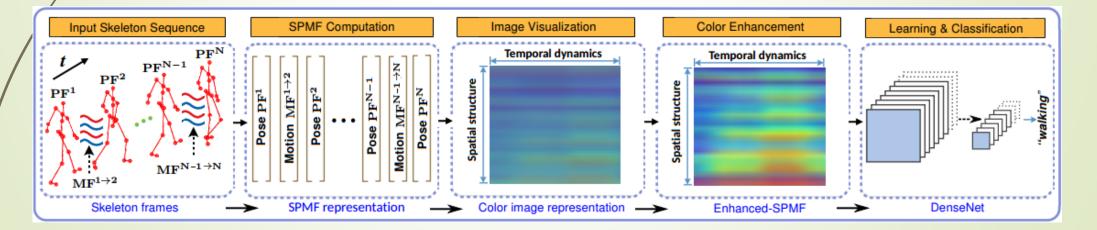
RTEXICA

AI SOLUTIONS FOR BUSINE

Kicking other person



Walking



Experimented with ResNets and (latest) DenseNets (100, 190 and 250 deep)

| Method (protocol of [44])                           | Year | Cross-Subject | Cross-View |
|-----------------------------------------------------|------|---------------|------------|
| Lie Group Representation [28]                       | 2014 | 50.10%        | 52.80%     |
| Hierarchical RNN [42]                               | 2016 | 59.07%        | 63.97%     |
| Dynamic Skeletons [97]                              | 2015 | 60.20%        | 65.20%     |
| Two-Layer P-LSTM [44]                               | 2016 | 62.93%        | 70.27%     |
| ST-LSTM Trust Gates [45]                            | 2016 | 69.20%        | 77.70%     |
| Skeleton-based ResNet [2]                           | 2018 | 73.40%        | 80.40%     |
| Geometric Features [73]                             | 2017 | 70.26%        | 82.39%     |
| Two-Stream RNN [94]                                 | 2017 | 71.30%        | 79.50%     |
| Enhanced Skeleton [98]                              | 2017 | 75.97%        | 82.56%     |
| Lie Group Skeleton+CNN [99]                         | 2017 | 75.20%        | 83.10%     |
| CNN Kernel Feature Map [96]                         | 2018 | 75.35%        | N/A        |
| GCA-LSTM [95]                                       | 2018 | 76.10%        | 84.00%     |
| SPMF Inception-ResNet-222 [1]                       | 2018 | 78.89%        | 86.15%     |
| Enhanced-SPMF DenseNet ( $L = 100, k = 12$ ) (ours) | 2018 | 79.31%        | 86.64%     |
| Enhanced-SPMF DenseNet ( $L = 250, k = 24$ ) (ours) | 2018 | 80.11%        | 86.82%     |
| Enhanced-SPMF DenseNet ( $L = 190, k = 40$ ) (ours) | 2018 | 79.28%        | 86.68%     |

# Action Recognition (RGB-based) CORTEXICA

### Simple

### Complex



#### Simple



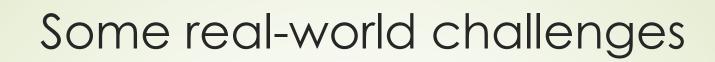




Recapping a bit:

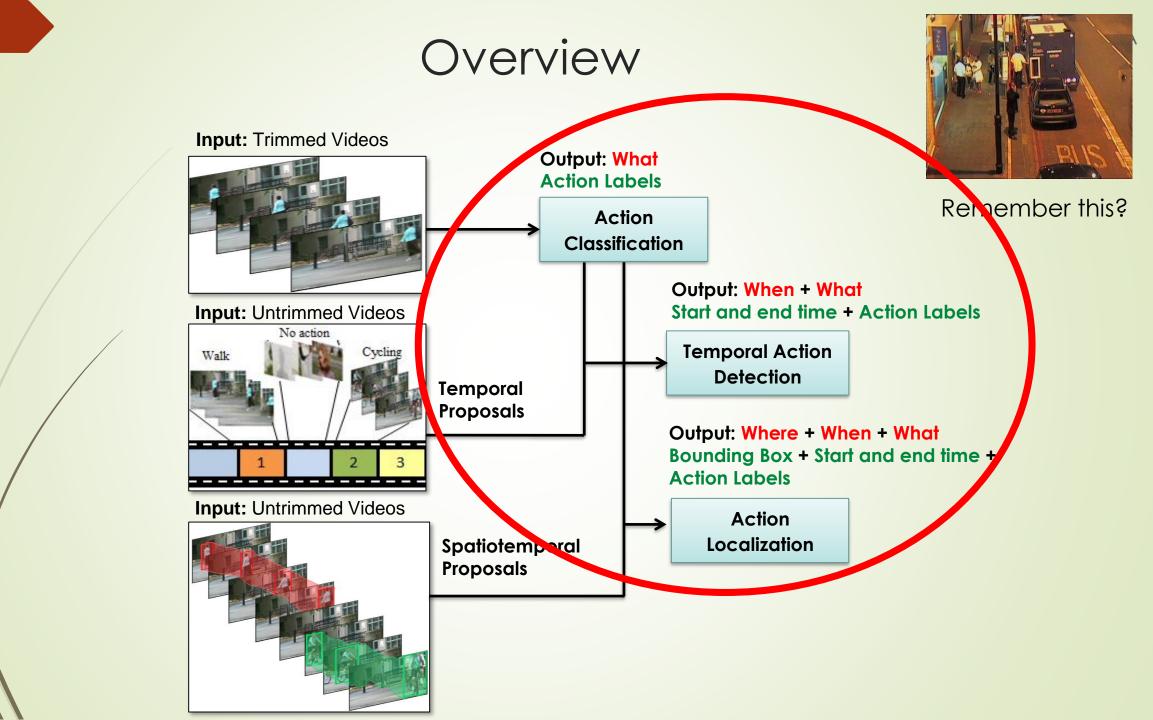
- Most of our daily life is about dealing with human activity
- Driving
- Working
- Interacting with the city/people
- Assisted living
- Video search
- Health & Safety
- ••••
- So, automating human action recognition can be a major technical and societal enabler







- Camera movement
- Illumination changes
- View-point changes (including sudden changes as in cinema)
- Occlusion
- Diversity of subjects
- Visual similarity of different classes (difficult to train a classifier)
- When an action starts/end (temporal detection)?
- Where is the action (spatial localisation)?
- Many different subjects/actions at the same time
- Datasets (action "ImageNets") e.g. Kinetics-600, activity.net, ....



# Some popular datasets

RTEXICA

AI SOLUTIONS FOR BUSINESS

| Dataset                           | No. of<br>Action | No. of<br>Actor | No. of<br>Video | Camer<br>a | Backgroun | Task                        | Evaluation     |
|-----------------------------------|------------------|-----------------|-----------------|------------|-----------|-----------------------------|----------------|
| Dulusei                           | S                | S               | s               | Motion     | d clutter | TUSK                        | Measure        |
| <b>KTH</b> [35] (2004)            | 6                | 25              | 600             | No         | No        | Recognition                 | Accuracy       |
| Weizmann [36] (2005)              | 10               | 9               | 600             | No         | No        | Recognition                 | Accuracy       |
| CMU Crowded Videos [37]<br>(2007) | 5                | 6               | 53              | No         | Yes       | Recognition                 | Accuracy       |
| MSR Action I [37] (2009)          | 3                | 10              | 16              | No         | Yes       | Spatiotemporal<br>Detection | Recall,<br>mAP |
| MSR Action II [38] (2010)         | 3                | 10+             | 54              | No         | Yes       | Temporal<br>Detection       | Recall,<br>mAP |
| MuHAVi-uncut [39] (2010)          | 17               | 7               | 8               | NO         | Yes       | Temporal<br>Detection       | Recall,<br>mAP |
| UCF11 (YouTube) [40] (2009)       | 11               | R               | 1,600           | Yes        | Yes       | Recognition                 | Accuracy       |
| VCF50 [41] (2012)                 | 50               | R               | 6,681           | Yes        | Yes       | Recognition                 | Accuracy       |
| UCF101 [42] (2012)                | 101              | R               | 12,32<br>0      | Yes        | Yes       | Recognition                 | Accuracy       |
| HMDB 51 [43] (2013)               | 51               | R               | 6,766           | Yes        | Yes       | Recognition                 | Accuracy       |
| Thumos14 [44] (2014)              | 20               | R               | 413             | Yes        | Yes       | Temporal<br>Detection       | Recall,<br>mAP |
| ActivityNet [45] (2015)           | 203              | R               | 19,99           | Yes        | Yes       | Temporal                    | Recall,        |

Yes

Yes

Detection

MAP

R

4

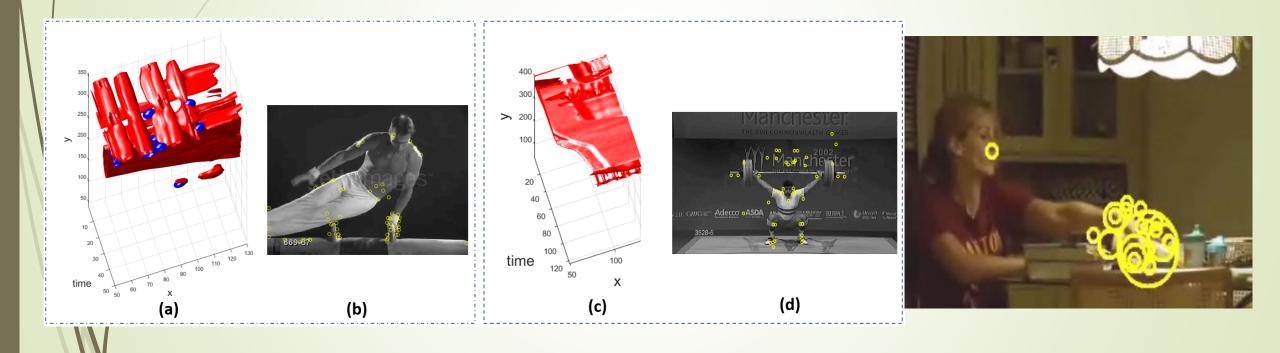
203

**ActivityNet** [45] (2015)



## Features

### 3D Harris – STIP Detector



# discrimination for a given training dataset

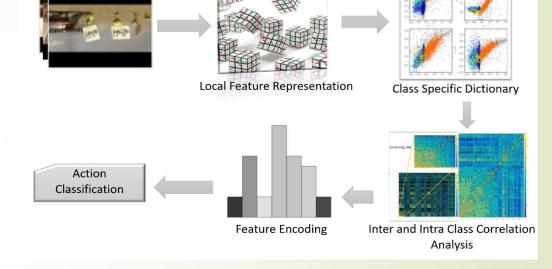
 Obtain highly correlated intra class visual words

Optimise inter and intra class

Obtian highly uncorrelated inter class visual words

| Method                         | Accuracy      |
|--------------------------------|---------------|
| II <sub>c</sub> CA             | <b>98.9</b> % |
| CNN + Rank Pooling             | 87.2%         |
| Dense Trajectories + MBH       | 88.0%         |
| Spatio-temporal features using | 86.5%         |
| independent sub space analysis |               |

**Nazir, S.,** Yousaf. M.H., and Velastin. S.A., Inter and Intra Class Correlation Analysis (IIcCA) for Human Action Recognition in Realistic Scenarios. IET; International Conference of Pattern Recognition Systems, 2017.



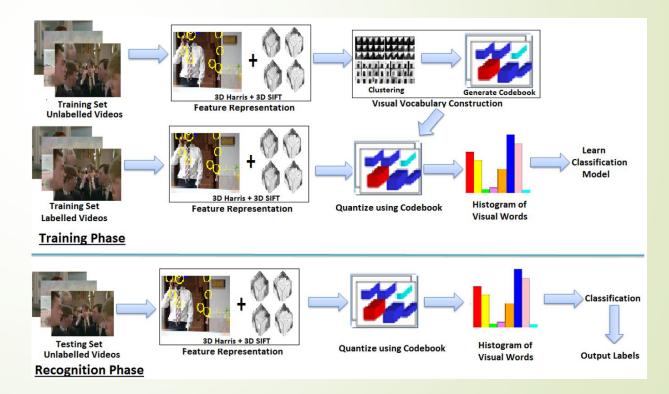
CORTEXICA





### Framework: Bag of Visual Words

- Spatio-Temporal Feature Representation
  - 3D Harris Space Time Interest Point Detector
  - 3D SIFT STIP Descriptor
  - C3D or R(2+1)D deep features
- Visual Vocabulary Construction
  - K-Mean Clustering
- Action Recognition
  - Histogram of Visual Word
  - Classification
    - Support Vector Machine
    - Naïve Bayes Classifier

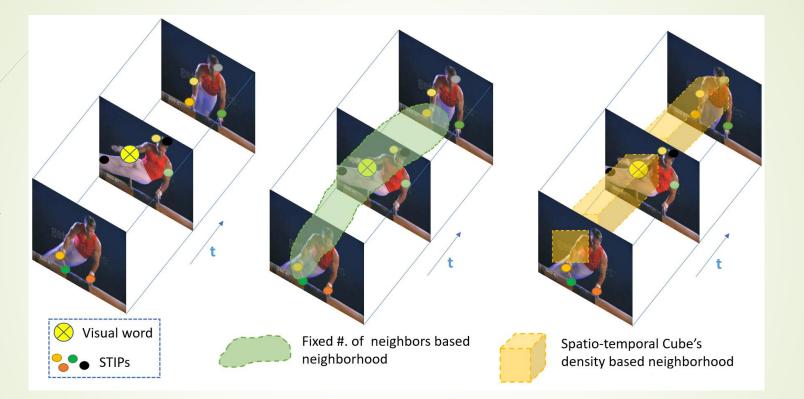


Nazir, S., Yousaf. M.H., and Velastin. S.A., Evaluating Bag of Visual Features (BoVF) Approach using Spatio Temporal Features for Action Recognition, Computers and Electrical Engineering, 2018.



| HOLLYWO          | OD2           | UCF Spor        | ts    | KTH                |        |
|------------------|---------------|-----------------|-------|--------------------|--------|
| Ullah et al [13] | 55.7%         | Wang et al [2]  | 88.2% | Tsai et al [17]    | 100%   |
| Wang et al [2]   | 58.3%         | Yuan et al [20] | 87.3% | Gilbert et al. [3] | 94.5%  |
| Jain et al [16]  | 66.4%         | Zhu et al [23]  | 84.3% | Wang et al [2]     | 94.2%  |
| Sun et al. [24]  | 48.1%         | Sun et al. [24] | 86.6% | Sun et al. [24]    | 93.1%  |
| Ours             | <b>68</b> .1% | Our             | 94%   | Our                | 91.82% |

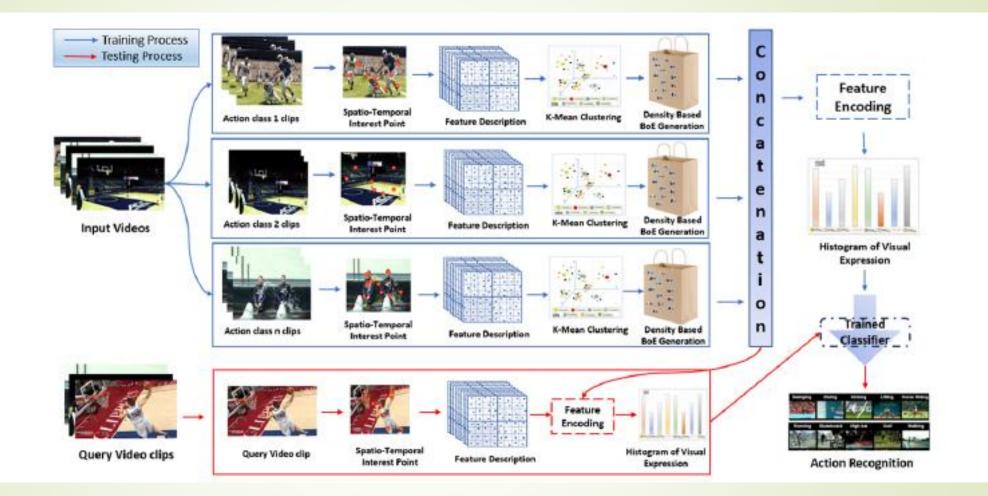
# Dynamic Neighbourhoods





Pipeline





Saima Nazir, Muhammad Haroon Yousaf, Jean-Christophe Nebel, Sergio A. Velastin. "Dynamic Spatio-Temporal Bag of Expression (D-STBoE) Model for Human Action Recognition", Sensors, <u>https://www.mdpi.com/1424-8220/19/12/2790</u> DOI: <u>https://doi.org/10.3390/s19122790</u> (2019)



### Results

| Author   | Method                                                     | Results |
|----------|------------------------------------------------------------|---------|
| Proposed | Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model | 94.10   |
| [71]     | HMG + iDT Descriptor                                       | 93.00   |
| [72]     | Bag of Words and Fusion Methods                            | 92.30   |
| [5]      | Dense Trajectories                                         | 91.70   |
| [66]     | Dense Trajectories and motion boundary descriptor          | 91.20   |

UCF-50

| Author   | Method                                                                | Results |
|----------|-----------------------------------------------------------------------|---------|
| Proposed | Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model            | 96.94   |
| [43]     | Spatio-temporal features with deep neural network                     | 98.76   |
| [59]     | Universal multi-view dictionary                                       | 85.90   |
| [55]     | Foreground Trajectory extraction method                               | 91.37   |
| [70]     | Graph-based multiple-instance learning                                | 84.60   |
| [65]     | Local motion and group sparsity-based approach                        | 86.10   |
| [66]     | Dense trajectories and motion boundary descriptors                    | 84.10   |
| [68]     | Invariant spatio-temporal features with independent subspace analysis | 75.80   |

UCF-11

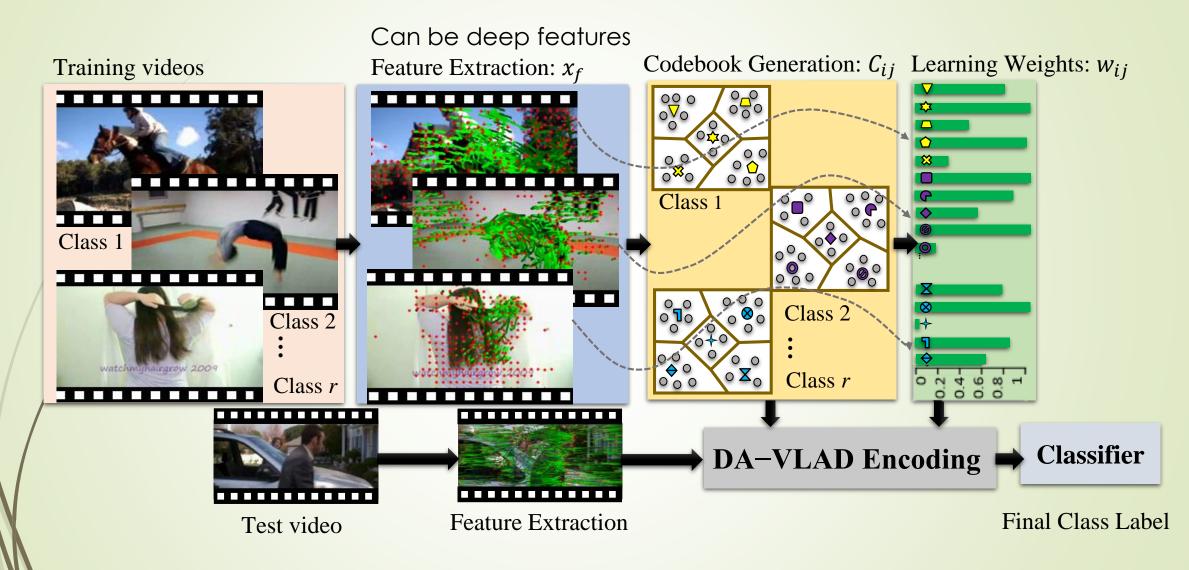
36

Compettive with deep neural methods, and does not need large amounts of data

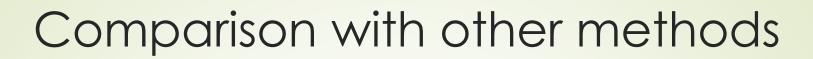
# **Combine features with BoW**

texica

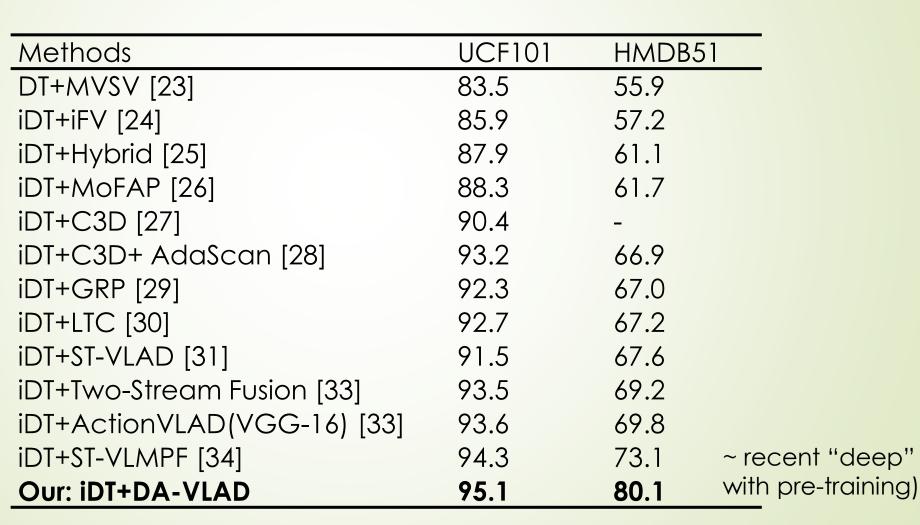
A SOLUTIONS FOR BUSIN



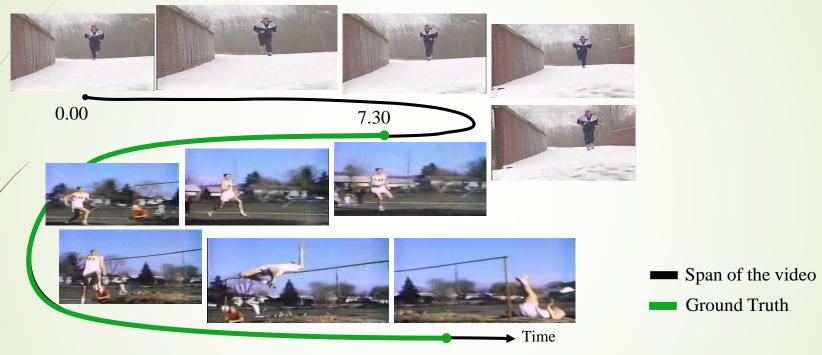
Fiza Murtaza, Muhammad Haroon Yousaf, Sergio A. Velastin. "DA-VLAD: DISCRIMINATIVE ACTION VECTOR OF LOCALLY AGGREGATED DESCRIPTORS FOR ACTION RECOGNITION", IEEE International Conference on Image Processing, ICIP-2018, October 7-10, Athens, Greece (2018)



FXICA

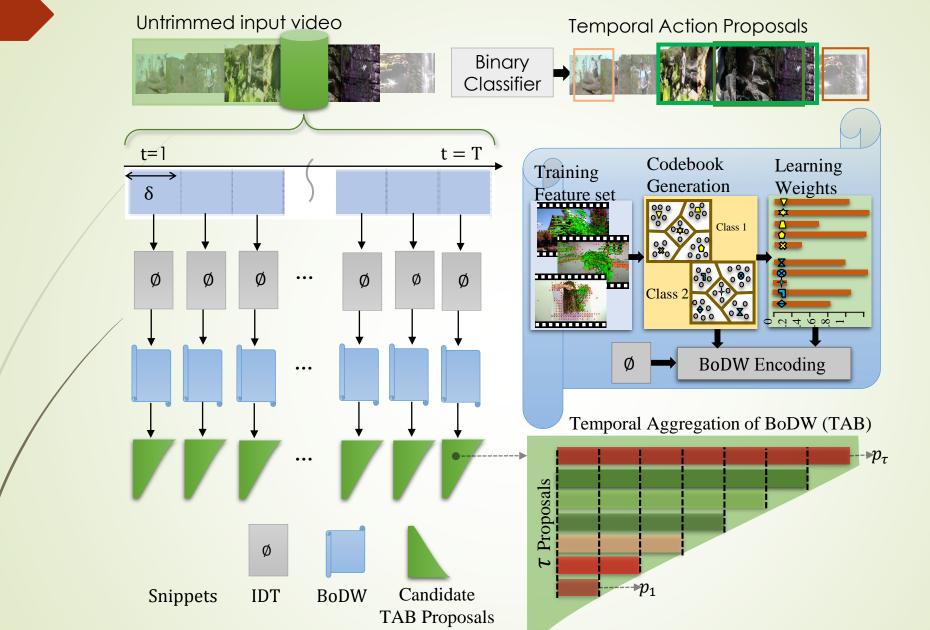


# **Temporal detection**



10.90





Fiza Murtaza, Muhammad Haroon Yousaf and Sergio A Velastin. "TAB: Temporally Aggregated Bagof-Discriminant-Words for Temporal Action Proposals", CVIU, 2019

RTEXICA

AI SOLUTIONS FOR BUSINESS

mAP @ IoU threshold 0.3 0.4 0.5 0.6 0.7 Thumos14 36.0 FG [12] (2016) 17.1 PSDF [13] (2016) 26.2 18.8 33.6 SCNN [6] (2016) 36.3 28.7 19.0 10.3 5.3 CDC [14] (2017) 23.3 13.1 7.9 40.1 29.4 25.6 TURN [15] (2017) 44.1 34.9 \_ \_ TPN [16] (2017) 44.1 37.1 28.2 20.6 12.7 TAG [17] (2017) 48.7 39.8 28.2 **R-C3D** [18] (2017) 44.9 35.6 28.9 SS-TAD [19] (2017) 45.7 29.2 9.6 SSN [20] (2017) 51.9 29.8 41.0 -31.0 CBR [21] (2017) 50.1 41.3 9.9 19.1 34.2 ETP [22] (2018) 48.2 42.4 23.4 13.9 41.5 37.5 54.9 47.2 31.6 **ActivityNet (Sports subset)** 

CORTEXICA

BoDS [Ours]54.947.241.537.531.6ActivityNet (Sports subset)[27]--33.2--FG [12] (2016)--36.7--TURN [15] (2017)--37.1--BoDS [Ours]51.145.038.134.229.0

# Where Next?



### ViVIAN: Vulnerability via VIsual Analysis

- Vulnerable Road Users (pedestrians, 2-wheelers, mobility impairment)
- Active and Assisted Living
- Inherently multi-disciplinary (computer vision, healthcare, transport engineering, ...)
- Intelligent roads: warn autonomous cars, optimise night lighting

### FUE: Falls in Urban Environments

- USA, 30 deaths, 17,000 injuries in escalators/lifts in 2017
- Over 65, one fall per year. Most common cause of injury in the over 75
- 240,000 falls p.a. (2018) in hospitals, hip fractures
   1.8M bed/days p.a., £1.9 billion. Fragility factures
   cost ~\$4.4 billion, p.a. 25% social care













- Vision is a major sensing mode in us humans that allows us to interact with other humans and the environment, as such it makes heavy use of our brains!
- Machines would need to have similar capability to be able to interact well with us and the world
- Computer Vision in most cases is about converting visual data into narratives (language) that we are particularly good at processing
- The combination of big data, powerful GPUs and neural networks has given rise to impressive performance
- "Programs" become building learning models.
- But there is still much to be done particularly in "wild" environments

46



# Thank you!

