
Calibration Tutorial
Kaori Hagihara

Communications and Remote Sensing Laboratory, Ecole Polytechnique de Louvain,UCL, Belgium

This document is aimed to explain our process to calibrate cameras with fish-eye lens attached on each,
and especially for people who want to make BOSS video frames distortion free. We remove lens
distortion by simply projecting the image from omni-directional camera model to pinhole model, and
compute extrinsic parameters by defining the pinhole model. Our process includes three steps on each
camera; Intrinsic calibration, Projection map computation and undistortion, and finally extrinsic
calibration.

This is just a suggestion and you might find the other better ways.

Note: OpenCV library [4] is required to compile every sample C++ code under src/ directory.

Intrinsic Calibration

Our intrinsic calibration is basically performed by OcamCalib Toolbox [1][2][3]. Refer to the following
website:
http://asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm

Set the parameters required in OcamCalib as following:

 Number of squares along the X direction = 5

 Number of squares along the Y direction = 8

 Size dX of each square along the X direction =27mm

 Size dY of each square along the X direction =27mm

Note: Don't forget to save the calibration results (Omni_Calib_Results.mat).

Projection map Computation and undistortion

Once the calibration results are acquired, you will compute a projection map into pinhole model. If you
have restarted Matlab, you have to load Omni_Calib_Results.mat. We prepared the following Matlab
functions for this computation; Lookup.m, undistort.m

Here is sample Matlab codes:

>> // Define pinhole model

>>focal=145; // focal length

>>shiftX=-30; // difference between the position of optical center and of image center

>>shiftY=10;

>> distance=600; // distance between the optical center and the end of the projection plane

>>prec = 10; // precision

>>rt=lookup(prec,ocam_model,focale,distance);

>>X_coord = zeros(height, width);

>>Y_coord = zeros(height, width);

>>[im_und,corners_und,X_coord,Y_coord]=undistort(I_1,rt,prec,Xp_abs(:,1,1),Yp_abs(:,1,1),ocam_
model,focale,shiftX,shiftY);

>>

>>save Xcoord.csv -ASCII -TABS Y_coord;

>>save Ycoord.csv -ASCII -TABS X_coord;

>>// the folloing lines are an option to display undistorted image

>>figure

>>imshow(im_und,[0 255])

Now, you got files “Xcoord.csv” “Ycoord.csv” containing pixel map table, where pixel at
(Xcoord[x,y], Ycoord[x,y]) on mapped images corresponds to (x,y) in original images.

The map table generated by the above code corresponds to the following camera intrinsic parameters.

Focal length: 145

image center: (360, 288)

This definition need to be written into a text file (e.g. “intrinsicMat.ini”) and saved for running a

program, which computes extrinsic parameters, in a matrix format as following:

145 0 360
0 145 288
0 0 1

A sample C++ code “projectimg.cc” might be useful to reconstruct distortion free images.

% ./projectimg input_image_filename Xcoord.csv Ycoord.csv output_image_filename

Note: The defined intrinsic parameters and computing extrinsic parameters are applicable just for
projected images.

Extrinsic Calibration

Extrinsic calibration is performed using a projected image containing a cubic calibration target. Pixel
coordinate information of chess-board corners on the projected image and 3D coordinate information at
corresponding Chess-board corners are the input to compute extrinsic parameters.

You can use the following information to define the world coordinate system.

Cube dimention: 930*930*930 (mm)

Chess-board dimension on each face:

Number of squares along the X direction = 5

 Number of squares along the Y direction = 5

 Size dX of each square along the X direction =180mm

 Size dY of each square along the Y direction =180mm

An interactive program “recordCalPnts” facilitates collecting pixel coordinate information of chess-
board corners on the projected image. This program outputs an annotated image “pointRefImg.jpg” of
original image (Ref: Illustration 1) and a text file "pointsInfo.csv" containing the list of point
coordinate at pixels which you have clicked (Ref: Insider red frame of Illustration 2).

% ./recordCalPnts image_file_name output_directory

Mouse control:

Left click: Pick the corner pixel information

The index number is represented at the position where you release the bottom

Yellow point: Clicked position

Red point: Detected corner position

Right click: Remove the last corner pixel information

Keyboard control:

↓ and T: Enlarge the displayed image

← and Q: Reduce the displayed image

ESC: Save the files and quite the program

Once you finish the program “recordCalPnts”, you open the output file "pointsInfo.csv" and add 3D
coordinate information at each point as Illustration 2.

Illustration 1: The image “pointRefImg.jpg” represents all
the points you clicked and index of each.

Finally, we compute the extrinsic Matrix by executing “extCalibration”.

>>./extCalibration pointsInfo.csv intrinsicMat.ini projection_image output_directory_path

The projection_image is an input image to project the 3D points on the list in “pointsInfo.csv”. This
program output a file “extrinsicPars.ini” containing Translation and Rotation Vector information as
following:

References:

[1] D. Scaramuzza, A. Martinelli, and R. Siegwart. A flexible technique for accurate omnidirectional
camera calibration and structure from motion. Proceedings of IEEE International Conference on
Computer Vision Systems, page 45, 2006.

[2] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for easily calibrating omnidirectional
cameras. Proc. of the IEEE International Conference on Intelligent Systems, IROS06, Beijing, China,
2006.

[3] M. Rufli, D. Scaramuzza, and R. Siegwart. Automatic detection of checkerboards on blurred and
distorted images. In /IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.

[4] Open Computer Vision Library, http://sourceforge.net/projects/opencvlibrary/

Illustration 2: Text file "pointsInfo.csv" contain tab-spaced values. Values inside red frame represents
the list of pixel coordinate information, and Values inside blue frame represents 3D coordinate
information. Each line corresponds to the same point.

Translation Vector

Rotation Vector

-1001.64 821.301 2019.86

-1.79213 -0.495429 2.018

	Calibration Tutorial
	Intrinsic Calibration
	Projection map Computation and undistortion
	Extrinsic Calibration

